
Lecture 13

Derivation of the Sn Equations Via Collocation

1 Isotropic Scattering Case

The standard Sn equations in 1–D slab geometry with isotropic scattering can easily be

derived using a collocation technique . We begin the derivation by choosing a set of N points

on [−1,+1] that are symmetrically arranged about µ = 0, {µm}N
m=1. Next we obtain a trial

space representation for the angular flux by interpolating these values. The interpolation

scheme must act as a linear operator on the discrete angular flux vectors. That is to say

that

H(a
−→
ψ(1) + b

−→
ψ(2)) = aH

−→
ψ(1) + bH

−→
ψ(2) , (1)

where H is the interpolation operator that maps a vector of discrete angular flux values to

a function on [−1,+1], a and b are scalars, and
−→
ψ(1) and

−→
ψ(2) are any two discrete angular

flux vectors:

−→
ψ(1) = (ψ

(1)
1 , ψ

(1)
2 , ψ

(1)
3 , · · · , ψ(1)

N ) ,

−→
ψ(2) = (ψ

(2)
1 , ψ

(2)
2 , ψ

(2)
3 · · · , ψ(2)

N ) . (2)
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In addition, the scheme must map the constant vector, (1, 1, · · · , 1), to the constant func-

tion, ψ(µ) = 1. The trial space angular flux can be expressed as follows:

ψ(µ) =
N∑

m=1

ψmBm(µ) , (3)

where

B1(µ) = H(1, 0, 0, · · · , 0) ,

B2(µ) = H(0, 1, 0, · · · , 0) ,

BN(µ) = H(0, 0, 0, · · · , 1) . (4)

It follows from Eq. (4) that

Bm(µj) = δm,j , m = 1, N , (5)

and further that

ψm = ψ(µm) , m = 1, N. (6)

There is a quadrature set that exactly integrates all elements of the trial space. The

quadrature points correspond to the interpolation points that we have defined, and the

weights are obtained simply by integrating Eq. (3):

2π

∫ +1

−1

ψ(µ) dµ =
N∑

m=1

ψmwm , (7)

where

wm = 2π

∫ +1

−1

Bm(µ) dµ . (8)
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Because the interpolation is required to map the constant vector to the constant function,

it follows that
N∑

m=1

Bm(µ) = 1.0 . (9)

Integrating (8), we find that the weights must sum to 4π:

N∑
m=1

wm = 2π

∫ +1

−1

dµ = 4π . (10)

To derive the Sn equations with angular (but not spatial) discretization, we first consider

the transport equation with isotropic scattering and an isotropic distributed source:

µ
∂ψ

∂x
+ σtψ =

σs

4π
φ+

q0
4π

. (11)

Next we substitute from (3) into (10) and collocate at the interpolation (quadrature) points:

µ
N∑

m=1

∂ψm

∂x
Bm(µk) + σt

N∑
m=1

ψmBm(µk) =

σs

4π

N∑
m=1

ψmwm +
q0
4π

, k = 1, N. (12)

Using Eq. (5), we simplify Eq. (12) as follows:

µk
∂ψk

∂x
+ σtψk =

σs

4π
φ+

q0
4π

, k = 1, N, (13)

where

φ =
N∑

m=1

ψmwm . (14)

Equation (14) is identical to the Sn equations (without spatial discretization) constructed

from the quadrature set corresponding to our interpolatory trial space representation.
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2 Anisotropic Scattering Case

With anisotropic scattering, the collocation process that we have defined does not neces-

sarily yield the standard Sn equations. To demonstrate this, we first consider the transport

equation with anisotropic scattering and an anisotropic distributed source:

µ
∂ψ

∂x
+ σtψ = 2π

∫ +1

−1

σs(µ
′ → µ)ψ(µ′)dµ′ + q . (15)

Substituting from Eq. (3) into Eq. (15), and collocating at the quadrature points, we get

an anisotropic distributed source:

µ
∂ψk

∂x
+ σtψk =

N∑
m=1

Sk,m + qk , (16)

where

Sk,m = 2π

∫ +1

−1

σs(µ
′ → µk)Bm(µ′)dµ′ . (17)

The right side of Eq. (16) differs from the standard SN equations. The main problem

with this expression is that it is generally not conservative. Conservation requires that

quadrature integration of Eq. (16) over all directions yield the balance equation:

∂J

∂x
+ σaφ = Q0 , (18)

where

Q0 =
N∑

m=1

qkwk . (19)
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This in turn requires that

N∑
k=1

Sk,mψmwk = σsφ , m = 1, N. (20)

If we assume that ψ is non-zero only in one direction, we find that Eq. (20) is equivalent

to requiring that
N∑

k=1

Sk,mwk = wm , m = 1, N. (21)

With an arbitrary scattering kernel, there is no reason to expect Eq. (21) to be satisfied.

To derive the SN expressions for the scattering and inhomogeneous sources, we first

follow Appendix C, and expand the scattering source and inhomogeneous sources in terms

of finite-order Legendre expansions:

µ
∂ψ

∂x
+ σtψ =

L∑
n=0

2n+ 1

4π
(σnφn + qn)Pn(µ) , (22)

where Pn(µ) is the Legendre polynomial of degree n, and

σn = 2π

∫ +1

−1

σs(µ0)Pn(µ0) dµ0 , (23)

φn = 2π

∫ +1

−1

ψ(µ0)Pn(µ0) dµ0 , (24)

qn = 2π

∫ +1

−1

q(µ0)Pn(µ0) dµ0 . (25)

Using Eq. (3), we can re-express Eq. (24) in a more explicit manner:

φn =
N∑

m=1

ψmw
(n)
m , (26)
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where

w(n)
m = 2π

∫ +1

−1

Bm(µ0)Pn(µ0) dµ0 . (27)

If we apply our collocation method to Eq. (22), we get

µ
∂ψk

∂x
+ σtψk =

L∑
n=0

2n+ 1

4π
(σnφn + qn)Pn(µk) , k = 1, N. (28)

The scattering and inhomogeneous source terms in Eq. (28) are still not those used in the

SN method, but only because the angular flux moments are computed using the special

quadrature weights defined by Eq. (27). Equation (28) represents the standard SN equa-

tions when the angular flux moments are computed using the standard quadrature weights

defined by Eq. (8):

φn =
N∑

m=1

ψmPn(µm)wm . (29)

It is not difficult to see that Eq. (28) will be conservative whenever the quadrature weights

exactly integrate the Legendre polynomials of degree K where 0 ≤ K ≤ L. In particular,

if we integrate the right side of Eq. (28) and assume that the quadrature set is exact for

all polynomials appearing in the sum, we obtain the desired result

N∑
k=1

L∑
n=0

2n+ 1

4π
(σnφn + qn)Pn(µk)wk =

L∑
n=0

2n+ 1

4π
(σnφn + qn)

N∑
k=1

Pn(µk)wk

= σ0φ0 + q0 = σsφ+ q0 , (30)

which follows directly from the orthogonality of the Legendre polynomials. Thus we see

that the standard Sn method requires the use of Legendre expansions when the scattering
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or inhomogenoeus sources are anisotropic. Furthermore, the accuracy of the quadrature

set limits the order of the Legendre expansion that can be used.

In accordance with the derivation of the Sn equations given previously, all standard

1-D Sn quadrature sets are required to have quadrature points symmetric about µ = 0.

This ensures that the quadrature set will exactly integrate all Legendre polynomials of odd

degree, and it preserves the symmetry of the 1-D slab-geometry transport equation. All

standard 1-D Sn quadrature sets are also required to integrate µ2. This is necessary to

preserve the diffusion limit. For instance, if we assume P1 scattering in Eq. (30), and a

linear dependence for the angular flux, i.e.,

ψm =
1

4π
φ+

3

4π
Jµm , (31)

then substitute from Eq. (31) into Eq. (30), and successively take the zero’th and first

angular moments of that equation using the quadrature formula, we get

3

4π
〈µ2〉∂J

∂x
+ σaφ = Q0 , (32)

and

1

4π
〈µ2〉∂φ

∂x
+ (σt − σ1)J = 0 , (33)

respectively, where we have assumed exact integration of all polynomials of odd degree,

and

〈µ2〉 =
N∑

m=1

µ2
mwm . (34)
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Using Eq. (33) to eliminate the current from Eq. (32), we obtain a diffusion equation:

− ∂

∂x
D
∂φ

∂x
+ σaφ = Q0 , (35)

where

D =
3

16π2
〈µ2〉2 1

σ0 − σ1

. (36)

Note from Eq. (36) that the correct diffusion coefficient will be obtain only if the quadrature

set is exact for µ2, i.e., if 〈µ2〉 = 4π/3.
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